.. _Feat Selectors: ************** Feat Selectors ************** Different base obj choices for the :class:`FeatSelector` are shown below The exact str indicator, as passed to the `obj` param is represented by the sub-heading (within "") The available feat selectors are further broken down by which can work with different problem_types. Additionally, a link to the original models documentation as well as the implemented parameter distributions are shown. binary ====== "rfe" ***** Base Class Documentation: :class:`sklearn.feature_selection.RFE` Param Distributions 0. "base rfe" :: n_features_to_select: None 1. "rfe num feats dist" :: n_features_to_select: Scalar(init=0.5, lower=0.1, upper=0.99).set_mutation(sigma=0.14833333333333334).set_bounds(full_range_sampling=False, lower=0.1, upper=0.99) "selector" ********** Base Class Documentation: :class:`BPt.extensions.feat_selectors.FeatureSelector` Param Distributions 0. "random" :: mask: 'sets as random features' 1. "searchable" :: mask: 'sets as hyperparameters' "univariate selection c" ************************ Base Class Documentation: :class:`sklearn.feature_selection.SelectPercentile` Param Distributions 0. "base univar fs classifier" :: score_func: percentile: 50 1. "univar fs classifier dist" :: score_func: percentile: Scalar(init=50, lower=1, upper=99).set_mutation(sigma=16.333333333333332).set_bounds(full_range_sampling=False, lower=1, upper=99) 2. "univar fs c keep more" :: score_func: percentile: Scalar(init=75, lower=50, upper=99).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=50, upper=99) 3. "univar fs c keep less" :: score_func: percentile: Scalar(init=25, lower=1, upper=50).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=1, upper=50) "variance threshold" ******************** Base Class Documentation: :class:`sklearn.feature_selection.VarianceThreshold` Param Distributions 0. "default" :: defaults only regression ========== "rfe" ***** Base Class Documentation: :class:`sklearn.feature_selection.RFE` Param Distributions 0. "base rfe" :: n_features_to_select: None 1. "rfe num feats dist" :: n_features_to_select: Scalar(init=0.5, lower=0.1, upper=0.99).set_mutation(sigma=0.14833333333333334).set_bounds(full_range_sampling=False, lower=0.1, upper=0.99) "selector" ********** Base Class Documentation: :class:`BPt.extensions.feat_selectors.FeatureSelector` Param Distributions 0. "random" :: mask: 'sets as random features' 1. "searchable" :: mask: 'sets as hyperparameters' "univariate selection r" ************************ Base Class Documentation: :class:`sklearn.feature_selection.SelectPercentile` Param Distributions 0. "base univar fs regression" :: score_func: percentile: 50 1. "univar fs regression dist" :: score_func: percentile: Scalar(init=50, lower=1, upper=99).set_mutation(sigma=16.333333333333332).set_bounds(full_range_sampling=False, lower=1, upper=99) 2. "univar fs r keep more" :: score_func: percentile: Scalar(init=75, lower=50, upper=99).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=50, upper=99) 3. "univar fs r keep less" :: score_func: percentile: Scalar(init=25, lower=1, upper=50).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=1, upper=50) "variance threshold" ******************** Base Class Documentation: :class:`sklearn.feature_selection.VarianceThreshold` Param Distributions 0. "default" :: defaults only categorical =========== "rfe" ***** Base Class Documentation: :class:`sklearn.feature_selection.RFE` Param Distributions 0. "base rfe" :: n_features_to_select: None 1. "rfe num feats dist" :: n_features_to_select: Scalar(init=0.5, lower=0.1, upper=0.99).set_mutation(sigma=0.14833333333333334).set_bounds(full_range_sampling=False, lower=0.1, upper=0.99) "selector" ********** Base Class Documentation: :class:`BPt.extensions.feat_selectors.FeatureSelector` Param Distributions 0. "random" :: mask: 'sets as random features' 1. "searchable" :: mask: 'sets as hyperparameters' "univariate selection c" ************************ Base Class Documentation: :class:`sklearn.feature_selection.SelectPercentile` Param Distributions 0. "base univar fs classifier" :: score_func: percentile: 50 1. "univar fs classifier dist" :: score_func: percentile: Scalar(init=50, lower=1, upper=99).set_mutation(sigma=16.333333333333332).set_bounds(full_range_sampling=False, lower=1, upper=99) 2. "univar fs c keep more" :: score_func: percentile: Scalar(init=75, lower=50, upper=99).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=50, upper=99) 3. "univar fs c keep less" :: score_func: percentile: Scalar(init=25, lower=1, upper=50).set_mutation(sigma=8.166666666666666).set_bounds(full_range_sampling=False, lower=1, upper=50) "variance threshold" ******************** Base Class Documentation: :class:`sklearn.feature_selection.VarianceThreshold` Param Distributions 0. "default" :: defaults only