Evaluate#

Get Estimator#

get_estimator(pipeline[, dataset, problem_spec])

Get a sklearn compatible estimator from a Pipeline, Dataset and ProblemSpec.

Evaluate Functions#

evaluate(pipeline, dataset[, problem_spec, ...])

This method is used to evaluate a model pipeline with cross-validation.

cross_validate(pipeline, dataset[, ...])

This function is a BPt compatible wrapper around sklearn.model_selection.cross_validate()

cross_val_score(pipeline, dataset[, ...])

This function is a BPt compatible wrapper around sklearn.model_selection.cross_val_score()

EvalResults#

EvalResults(estimator, ps[, encoders, ...])

This class is returned from calls to evaluate(), and can be used to store information from evaluate, or compute additional feature importances.

EvalResultsSubset(evaluator, subjects[, ...])

This class represents a subset of EvalResults and is returned as a result of calling EvalResults.subset_by().