BPt.Dataset.count#

Dataset.count(axis=0, level=None, numeric_only=False)[source]#

Count non-NA cells for each column or row.

The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.

Parameters
axis{0 or ‘index’, 1 or ‘columns’}, default 0

If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.

levelint or str, optional

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.

numeric_onlybool, default False

Include only float, int or boolean data.

Returns
Series or DataFrame

For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.

See also

Series.count

Number of non-NA elements in a Series.

DataFrame.value_counts

Count unique combinations of columns.

DataFrame.shape

Number of DataFrame rows and columns (including NA elements).

DataFrame.isna

Boolean same-sized DataFrame showing places of NA elements.

Examples

Constructing DataFrame from a dictionary:

>>> df = pd.DataFrame({"Person":
...                    ["John", "Myla", "Lewis", "John", "Myla"],
...                    "Age": [24., np.nan, 21., 33, 26],
...                    "Single": [False, True, True, True, False]})
>>> df
   Person   Age  Single
0    John  24.0   False
1    Myla   NaN    True
2   Lewis  21.0    True
3    John  33.0    True
4    Myla  26.0   False

Notice the uncounted NA values:

>>> df.count()
Person    5
Age       4
Single    5
dtype: int64

Counts for each row:

>>> df.count(axis='columns')
0    3
1    2
2    3
3    3
4    3
dtype: int64