BPt.Dataset.dropna#
- Dataset.dropna(*, axis=0, how=_NoDefault.no_default, thresh=_NoDefault.no_default, subset=None, inplace=False)[source]#
Remove missing values.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Determine if rows or columns which contain missing values are removed.
0, or ‘index’ : Drop rows which contain missing values.
1, or ‘columns’ : Drop columns which contain missing value.
Changed in version 1.0.0: Pass tuple or list to drop on multiple axes. Only a single axis is allowed.
- how{‘any’, ‘all’}, default ‘any’
Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.
‘any’ : If any NA values are present, drop that row or column.
‘all’ : If all values are NA, drop that row or column.
- threshint, optional
Require that many non-NA values. Cannot be combined with how.
- subsetcolumn label or sequence of labels, optional
Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
- inplacebool, default False
Whether to modify the DataFrame rather than creating a new one.
- Returns
- DataFrame or None
DataFrame with NA entries dropped from it or None if
inplace=True
.
See also
DataFrame.isna
Indicate missing values.
DataFrame.notna
Indicate existing (non-missing) values.
DataFrame.fillna
Replace missing values.
Series.dropna
Drop missing values.
Index.dropna
Drop missing indices.
Examples
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25