BPt.Dataset.expanding#
- Dataset.expanding(min_periods=1, center=None, axis=0, method='single')[source]#
Provide expanding window calculations.
- Parameters
- min_periodsint, default 1
Minimum number of observations in window required to have a value; otherwise, result is
np.nan
.- centerbool, default False
If False, set the window labels as the right edge of the window index.
If True, set the window labels as the center of the window index.
Deprecated since version 1.1.0.
- axisint or str, default 0
If
0
or'index'
, roll across the rows.If
1
or'columns'
, roll across the columns.For Series this parameter is unused and defaults to 0.
- methodstr {‘single’, ‘table’}, default ‘single’
Execute the rolling operation per single column or row (
'single'
) or over the entire object ('table'
).This argument is only implemented when specifying
engine='numba'
in the method call.New in version 1.3.0.
- Returns
Expanding
subclass
Notes
See Windowing Operations for further usage details and examples.
Examples
>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
min_periods
Expanding sum with 1 vs 3 observations needed to calculate a value.
>>> df.expanding(1).sum() B 0 0.0 1 1.0 2 3.0 3 3.0 4 7.0 >>> df.expanding(3).sum() B 0 NaN 1 NaN 2 3.0 3 3.0 4 7.0