BPt.Dataset.from_dict#

classmethod Dataset.from_dict(data, orient='columns', dtype=None, columns=None)[source]#

Construct DataFrame from dict of array-like or dicts.

Creates DataFrame object from dictionary by columns or by index allowing dtype specification.

Parameters
datadict

Of the form {field : array-like} or {field : dict}.

orient{‘columns’, ‘index’, ‘tight’}, default ‘columns’

The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’].

New in version 1.4.0: ‘tight’ as an allowed value for the orient argument

dtypedtype, default None

Data type to force, otherwise infer.

columnslist, default None

Column labels to use when orient='index'. Raises a ValueError if used with orient='columns' or orient='tight'.

Returns
DataFrame

See also

DataFrame.from_records

DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame.

DataFrame

DataFrame object creation using constructor.

DataFrame.to_dict

Convert the DataFrame to a dictionary.

Examples

By default the keys of the dict become the DataFrame columns:

>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
   col_1 col_2
0      3     a
1      2     b
2      1     c
3      0     d

Specify orient='index' to create the DataFrame using dictionary keys as rows:

>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
       0  1  2  3
row_1  3  2  1  0
row_2  a  b  c  d

When using the ‘index’ orientation, the column names can be specified manually:

>>> pd.DataFrame.from_dict(data, orient='index',
...                        columns=['A', 'B', 'C', 'D'])
       A  B  C  D
row_1  3  2  1  0
row_2  a  b  c  d

Specify orient='tight' to create the DataFrame using a ‘tight’ format:

>>> data = {'index': [('a', 'b'), ('a', 'c')],
...         'columns': [('x', 1), ('y', 2)],
...         'data': [[1, 3], [2, 4]],
...         'index_names': ['n1', 'n2'],
...         'column_names': ['z1', 'z2']}
>>> pd.DataFrame.from_dict(data, orient='tight')
z1     x  y
z2     1  2
n1 n2
a  b   1  3
   c   2  4