BPt.Dataset.info#
- Dataset.info(verbose=None, buf=None, max_cols=None, memory_usage=None, show_counts=None, null_counts=None)[source]#
Print a concise summary of a DataFrame.
This method prints information about a DataFrame including the index dtype and columns, non-null values and memory usage.
- Parameters
- verbosebool, optional
Whether to print the full summary. By default, the setting in
pandas.options.display.max_info_columns
is followed.- bufwritable buffer, defaults to sys.stdout
Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than max_cols columns, the truncated output is used. By default, the setting in
pandas.options.display.max_info_columns
is used.- memory_usagebool, str, optional
Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the
pandas.options.display.memory_usage
setting.True always show memory usage. False never shows memory usage. A value of ‘deep’ is equivalent to “True with deep introspection”. Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. See the Frequently Asked Questions for more details.
- show_countsbool, optional
Whether to show the non-null counts. By default, this is shown only if the DataFrame is smaller than
pandas.options.display.max_info_rows
andpandas.options.display.max_info_columns
. A value of True always shows the counts, and False never shows the counts.- null_countsbool, optional
Deprecated since version 1.2.0: Use show_counts instead.
- Returns
- None
This method prints a summary of a DataFrame and returns None.
See also
DataFrame.describe
Generate descriptive statistics of DataFrame columns.
DataFrame.memory_usage
Memory usage of DataFrame columns.
Examples
>>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00
Prints information of all columns:
>>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes
Prints a summary of columns count and its dtypes but not per column information:
>>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes
Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file:
>>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: ... f.write(s) 260
The memory_usage parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization:
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB
>>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 165.9 MB