BPt.Dataset.nunique#
- Dataset.nunique(axis=0, dropna=True)[source]#
Count number of distinct elements in specified axis.
Return Series with number of distinct elements. Can ignore NaN values.
- Parameters
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- dropnabool, default True
Don’t include NaN in the counts.
- Returns
- Series
See also
Series.nunique
Method nunique for Series.
DataFrame.count
Count non-NA cells for each column or row.
Examples
>>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64
>>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64