Ensemble Types#
Different base obj choices for the Ensemble
are shown below
The exact str indicator, as passed to the obj param is represented by the sub-heading (within “”)
The available ensembles are further broken down by which can workwith different problem_types.
Additionally, a link to the original models documentation as well as the implemented parameter distributions are shown.
Also note that ensemble may require a few extra params!
binary#
“adaboost classifier”#
Base Class Documentation:
sklearn.ensemble.AdaBoostClassifier
Param Distributions
“default”
defaults only
“bagging classifier”#
Base Class Documentation:
sklearn.ensemble.BaggingClassifier
Param Distributions
“default”
defaults only
“balanced bagging classifier”#
Base Class Documentation:
imblearn.ensemble.BalancedBaggingClassifier
Param Distributions
“default”
defaults only
“stacking classifier”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtStackingClassifier
Param Distributions
“default”
defaults only
“voting classifier”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtVotingClassifier
Param Distributions
“voting classifier”
voting: 'soft'
regression#
“adaboost regressor”#
Base Class Documentation:
sklearn.ensemble.AdaBoostRegressor
Param Distributions
“default”
defaults only
“bagging regressor”#
Base Class Documentation:
sklearn.ensemble.BaggingRegressor
Param Distributions
“default”
defaults only
“stacking regressor”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtStackingRegressor
Param Distributions
“default”
defaults only
“voting regressor”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtVotingRegressor
Param Distributions
“default”
defaults only
categorical#
“adaboost classifier”#
Base Class Documentation:
sklearn.ensemble.AdaBoostClassifier
Param Distributions
“default”
defaults only
“bagging classifier”#
Base Class Documentation:
sklearn.ensemble.BaggingClassifier
Param Distributions
“default”
defaults only
“balanced bagging classifier”#
Base Class Documentation:
imblearn.ensemble.BalancedBaggingClassifier
Param Distributions
“default”
defaults only
“stacking classifier”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtStackingClassifier
Param Distributions
“default”
defaults only
“voting classifier”#
Base Class Documentation:
BPt.pipeline.ensemble_wrappers.BPtVotingClassifier
Param Distributions
“voting classifier”
voting: 'soft'