Differential Evolution#
Background: https://en.wikipedia.org/wiki/Differential_evolution
In the below descriptions the different DE choices vary on a few different parameters.
- initialization
The algorithm/distribution used for the initialization phase. Either,
‘LHS’ : Latin Hypercube Sampling
‘QR’ : Quasi-Random
‘gaussian’ : Normal Distribution
(default = ‘gaussian’)
- scale
The scale of random component of the updates
Either,
‘mini’ : 1 / sqrt(dimension)
1 : no change
(default = 1)
- crossover
The crossover rate value / strategy used during DE. Either,
‘dimension’ : crossover rate of 1 / dimension
‘random’ : different random (uniform) crossover rate at each iteration
‘onepoint’ : one point crossover
‘twopoints’ : two points crossover
(default = .5)
- popsize
The size of the population to use. Either,
‘standard’ : max(num_workers, 30)
‘dimension’ : max(num_workers, 30, dimension +1)
‘large’ : max(num_workers, 30, 7 * dimension)
Note: dimension refers to the dimensions of the hyper-parameters being searched over. ‘standard’ by default.s
(default = ‘standard’)
- recommendation
Choice of the criterion for the best point to recommend. Either,
‘optimistic’ : best
‘noisy’ : add noise to choice of best
(default = ‘optimistic’)
‘DE’#
Defaults Only
‘OnePointDE’#
crossover: 'onepoint'
‘TwoPointsDE’#
crossover: 'twopoint'
‘LhsDE’#
initialization: 'LHS'
‘QrDE’#
initialization: 'QE'
‘MiniDE’#
scale: 'mini'
‘MiniLhsDE’#
initialization: 'LHS'
scale: 'mini'
‘MiniQrDE’#
initialization: 'QE'
scale: 'mini'
‘NoisyDE’#
recommendation: 'noisy'
‘AlmostRotationInvariantDE’#
crossover: .9
‘AlmostRotationInvariantDEAndBigPop’#
crossover: .9
popsize: 'dimension'
‘RotationInvariantDE’#
crossover: 1
popsize: 'dimension'
‘BPRotationInvariantDE’#
crossover: 1
popsize: 'large'