Transformers#

Different base obj choices for the Transformer are shown below The exact str indicator, as passed to the obj param is represented by the sub-heading (within “”) Additionally, a link to the original models documentation as well as the implemented parameter distributions are shown.

“pca”#

Base Class Documentation: sklearn.decomposition.PCA

Param Distributions

  1. “default”

    defaults only
    
  2. “pca var search”

    n_components: Scalar(init=0.75, lower=0.1, upper=0.99).set_mutation(sigma=0.14833333333333334).set_bounds(full_range_sampling=False, lower=0.1, upper=0.99)
    svd_solver: 'full'
    

“sparse pca”#

Base Class Documentation: sklearn.decomposition.SparsePCA

Param Distributions

  1. “default”

    defaults only
    

“mini batch sparse pca”#

Base Class Documentation: sklearn.decomposition.MiniBatchSparsePCA

Param Distributions

  1. “default”

    defaults only
    

“factor analysis”#

Base Class Documentation: sklearn.decomposition.FactorAnalysis

Param Distributions

  1. “default”

    defaults only
    

“dictionary learning”#

Base Class Documentation: sklearn.decomposition.DictionaryLearning

Param Distributions

  1. “default”

    defaults only
    

“mini batch dictionary learning”#

Base Class Documentation: sklearn.decomposition.MiniBatchDictionaryLearning

Param Distributions

  1. “default”

    defaults only
    

“fast ica”#

Base Class Documentation: sklearn.decomposition.FastICA

Param Distributions

  1. “default”

    defaults only
    

“incremental pca”#

Base Class Documentation: sklearn.decomposition.IncrementalPCA

Param Distributions

  1. “default”

    defaults only
    

“kernel pca”#

Base Class Documentation: sklearn.decomposition.KernelPCA

Param Distributions

  1. “default”

    defaults only
    

“nmf”#

Base Class Documentation: sklearn.decomposition.NMF

Param Distributions

  1. “default”

    defaults only
    

“truncated svd”#

Base Class Documentation: sklearn.decomposition.TruncatedSVD

Param Distributions

  1. “default”

    defaults only
    

“one hot encoder”#

Base Class Documentation: sklearn.preprocessing.OneHotEncoder

Param Distributions

  1. “ohe”

    sparse: False
    handle_unknown: 'ignore'
    

“dummy coder”#

Base Class Documentation: sklearn.preprocessing.OneHotEncoder

Param Distributions

  1. “dummy code”

    sparse: False
    drop: 'first'
    handle_unknown: 'error'