Scalers#
Different base obj choices for the Scaler
are shown below
The exact str indicator, as passed to the obj param is represented by the sub-heading (within “”)
Additionally, a link to the original models documentation as well as the implemented parameter distributions are shown.
“standard”#
Base Class Documentation:
sklearn.preprocessing.StandardScaler
Param Distributions
“base standard”
with_mean: True with_std: True
“minmax”#
Base Class Documentation:
sklearn.preprocessing.MinMaxScaler
Param Distributions
“base minmax”
feature_range: (0, 1)
“maxabs”#
Base Class Documentation:
sklearn.preprocessing.MaxAbsScaler
Param Distributions
“default”
defaults only
“robust”#
Base Class Documentation:
sklearn.preprocessing.RobustScaler
Param Distributions
“base robust”
quantile_range: (5, 95)“robust gs”
quantile_range: TransitionChoice([(1, 99), (2, 98), (3, 97), (4, 96), (5, 95), (6, 94), (7, 93), (8, 92), (9, 91), (10, 90), (11, 89), (12, 88), (13, 87), (14, 86), (15, 85), (16, 84), (17, 83), (18, 82), (19, 81), (20, 80), (21, 79), (22, 78), (23, 77), (24, 76), (25, 75), (26, 74), (27, 73), (28, 72), (29, 71), (30, 70), (31, 69), (32, 68), (33, 67), (34, 66), (35, 65), (36, 64), (37, 63), (38, 62), (39, 61)])
“yeo”#
Base Class Documentation:
sklearn.preprocessing.PowerTransformer
Param Distributions
“base yeo”
method: 'yeo-johnson' standardize: True
“boxcox”#
Base Class Documentation:
sklearn.preprocessing.PowerTransformer
Param Distributions
“base boxcox”
method: 'box-cox' standardize: True
“winsorize”#
Base Class Documentation:
BPt.extensions.scalers.Winsorizer
Param Distributions
“base winsorize”
quantile_range: (1, 99)“winsorize gs”
quantile_range: TransitionChoice([(1, 99), (2, 98), (3, 97), (4, 96), (5, 95), (6, 94), (7, 93), (8, 92), (9, 91), (10, 90), (11, 89), (12, 88), (13, 87), (14, 86), (15, 85), (16, 84), (17, 83), (18, 82), (19, 81), (20, 80), (21, 79), (22, 78), (23, 77), (24, 76), (25, 75), (26, 74), (27, 73), (28, 72), (29, 71), (30, 70), (31, 69), (32, 68), (33, 67), (34, 66), (35, 65), (36, 64), (37, 63), (38, 62), (39, 61)])
“quantile norm”#
Base Class Documentation:
sklearn.preprocessing.QuantileTransformer
Param Distributions
“base quant norm”
output_distribution: 'normal'
“quantile uniform”#
Base Class Documentation:
sklearn.preprocessing.QuantileTransformer
Param Distributions
“base quant uniform”
output_distribution: 'uniform'
“normalize”#
Base Class Documentation:
sklearn.preprocessing.Normalizer
Param Distributions
“default”
defaults only