CMA#
This refers to the covariance matrix adaptation evolutionary optimzation strategy Background: https://en.wikipedia.org/wiki/CMA-ES
The following parameters are changed
- diagonal
To use the diagonal version of CMA (advised in large dimensions)
True : Use diagonal
False : Don’t use diagonal
- fcmaes
To use fast implementation, doesn’t support diagonal=True. produces equivalent results, preferable for high dimensions or if objective function evaluation is fast.
‘CMA’#
diagonal: False
fcmaes: False
‘DiagonalCMA’#
diagonal: True
fcmaes: False
‘FCMA’#
diagonal: False
fcmaes: True
Further variants of CMA include CMA with test based population size adaption. It sets Population-size equal to lambda = 4 x dimension. It further introduces the parameters:
- popsize_adaption
To use CMA with popsize adaptation
True : Use popsize adaptation
False : Don’t…
- covariance_memory
Use covariance_memory
True : Use covariance
False : Don’t…
‘EDA’#
popsize_adaption: False
covariance_memory: False
‘PCEDA’#
popsize_adaption: True
covariance_memory: False
‘MPCEDA’#
popsize_adaption: True
covariance_memory: True
‘MEDA’#
popsize_adaption: False
covariance_memory: True